题意:修改区间内的数、询问区间内任意子段和的期望值。
然后我们尝试把每次的答案求出来。然后对这个式子乱搞。发现对于每个数a[i],维护a[i],i*a[i],i*i*a[i]就好了、
那么线段树维护就行了。好了没了。(其实是我懒得写题解了、、、
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define ls (rt<<1) #define rs (rt<<1|1) #define mid (l+r>>1) #define lson l,mid,ls #define rson mid+1,r,rs #define root 1,n,1 typedef long long ll; const int maxn=500005; ll a[maxn]={0},b[maxn]={0},c[maxn]={0},add[maxn]={0}; char buf[5000000],*pt=buf,buf2[5000000],*o=buf2; inline ll getint(){ ll r=0,f=1; while((*pt!='-')&&(*pt<'0'||*pt>'9'))pt++; if(*pt=='-')f=-1, pt++; while(*pt>='0'&&*pt<='9')r=r*10+*pt++-48; return r*f; }inline char getop(){ while(*pt!='C'&&*pt!='Q')pt++; return *pt; }inline void print(ll x){ char str[30],*p=str; if(!x)*o++=48; else{ while(x) *p++=x%10+48,x/=10; while(p--!=str)*o++=*p;} }inline void pushup(ll rt){ a[rt]=a[ls]+a[rs], b[rt]=b[ls]+b[rs], c[rt]=c[ls]+c[rs]; }inline void pushdown(ll l,ll r,ll rt){ ll lc=mid-l+1, rc=r-mid, rr=mid, ll=mid+1; if(add[rt]){ add[ls]+=add[rt]; a[ls]+=lc*add[rt]; b[ls]+=(l+rr)*lc*add[rt]>>1; c[ls]+=(rr*(rr+1)*(rr<<1|1)-(l-1)*l*(l-1<<1|1))/6*add[rt]; add[rs]+=add[rt]; a[rs]+=rc*add[rt]; b[rs]+=(ll+r)*rc*add[rt]>>1; c[rs]+=(r*(r+1)*(r<<1|1)-(ll-1)*ll*(ll-1<<1|1))/6*add[rt]; add[rt]=0; } }void update(ll L,ll R,ll d,ll l,ll r,ll rt){ if(L<=l&&r<=R){ add[rt]+=d; a[rt]+=(r-l+1)*d; b[rt]+=(l+r)*(r-l+1)*d>>1; c[rt]+=(r*(r+1)*(r<<1|1)-(l-1)*l*(l-1<<1|1))/6*d; return; }pushdown(l,r,rt); if(L<=mid) update(L,R,d,lson); if(mid<R) update(L,R,d,rson); pushup(rt); }void query(ll L,ll R,ll&A,ll&B,ll&C,ll l,ll r,ll rt){ if(L<=l && r<=R){ A=a[rt],B=b[rt],C=c[rt]; return; }pushdown(l,r,rt); ll SA=0,SB=0,SC=0,TA,TB,TC; if(L<=mid) query(L,R,TA,TB,TC,lson), SA+=TA, SB+=TB, SC+=TC; if(mid<R) query(L,R,TA,TB,TC,rson), SA+=TA, SB+=TB, SC+=TC; A=SA,B=SB,C=SC; }inline ll gcd(ll a,ll b){ return (!b)?a:gcd(b,a%b); }int main(){ fread(pt,1,5000000,stdin); ll n,q,u,v,w,TA,TB,TC,A,B,C; for(n=getint(),q=getint();q;q--){ if(getop()=='C'){ u=getint(),v=getint(),w=getint(); update(u,v-1,w,root); }else{ u=getint(),v=getint(); query(u,v-1,TA,TB,TC,root); A=(u+v-1)*TB+TA*(v-v*u)-TC; B=(v-u+1)*(v-u)>>1; C=gcd(A,B); print(A/C);*o++='/';print(B/C);*o++='\n'; } }fwrite(buf2,1,o-buf2,stdout);return 0; }
2023年1月31日 21:32
Expressway (road) [line segment tree] is a great example of using line segment tree to solve a problem. It can be used to solve problems related to roads and foods to avoid with gout expressways, such as finding the optimal route between two points. This solution is both efficient and effective, making it an ideal choice for those looking to reduce their travel time. Additionally, its implementation is straightforward, making it a great choice for those just getting started with line segment tree algorithms. With its help, you can find the best path to take in no time!
2023年6月08日 20:38
When I applied for internet banking, I supplied my phone number. However, nothing has changed in my account. My e-banking account was temporarily frozen, and I needed to change my password.Overseas Indian Bank My mobile edutec.in number is being updated, and online banking is enabled on my account. When I applied for internet banking, I supplied my phone number. However, nothing has changed in my account. My e-banking account was temporarily frozen, and I needed to change my password. Overseas Indian Bank My mobile number is being updated, and online banking is enabled on my account.